Ecuaciones lineales, Parte 2
REFLEXION
Algoritmo para determinar si un sistema es compatible
Podemos averiguar si un sistema es o no compatible mediante el Teorema de Rouché-Frobenius que establece que un sistema de ecuaciones lineales es compatible solo si el rango de su matriz ampliada coincide con el de su matriz de coeficientes. Supongamos que el sistema es compatible. Si el valor común de los rangos de las matrices coincide con el número de variables, el sistema es compatible determinado; en caso contrario, es compatible indeterminado.
Sistemas compatibles indeterminados
Un sistema sobre un cuerpo K es compatible indeterminado cuando posee un número infinito de soluciones. Por ejemplo, el siguiente sistema:
Tanto la primera como la segunda ecuación se corresponden con la recta cuya pendiente es y que pasa por el punto , por lo que ambas coinciden en todos los puntos de dicha recta. El sistema es compatible por tener solución o puntos comunes entre las rectas, pero es indeterminado al ocurrir esto en infinitos puntos.
- En este tipo de sistemas, la solución genérica consiste en expresar una o más variables como función matemática del resto. En los sistemas lineales compatibles indeterminados, al menos una de sus ecuaciones se puede hallar como combinación lineal del resto, es decir, es linealmente dependiente.
- La condición necesaria para que un sistema sea compatible indeterminado es que el determinante de la matriz del sistema sea cero, al igual que el rango de la matriz ampliada sea menor al número de incógnitas(y por tanto uno de sus autovalores será 0):
- De hecho, de las dos condiciones anteriores se desprende, que el conjunto de soluciones de un sistema compatible indeterminado es un subespacio vectorial. Y la dimensión de ese espacio vectorial coincidirá con la multiplicidad geométrica del autovalor cero.
Sistemas incompatibles
De un sistema se dice que es incompatible cuando no presenta ninguna solución. Por ejemplo, supongamos el siguiente sistema:
Las ecuaciones se corresponden gráficamente con dos rectas, ambas con la misma pendiente, Al ser paralelas, no se cortan en ningún punto, es decir, no existe ningún valor que satisfaga a la vez ambas ecuaciones.
Matemáticamente un sistema de estos es incompatible cuando el rango de la matriz del sistema es inferior al rango de la matriz ampliada. Una condición necesaria para que esto suceda es que el determinante de la matriz del sistema sea cero:
Muy bien
ResponderBorrar